Non-Greedy L21-Norm Maximization for Principal Component Analysis
نویسندگان
چکیده
Principal Component Analysis (PCA) is one of the most important unsupervised methods to handle highdimensional data. However, due to the high computational complexity of its eigen decomposition solution, it hard to apply PCA to the large-scale data with high dimensionality. Meanwhile, the squared L2-norm based objective makes it sensitive to data outliers. In recent research, the L1-norm maximization based PCA method was proposed for efficient computation and being robust to outliers. However, this work used a greedy strategy to solve the eigen vectors. Moreover, the L1-norm maximization based objective may not be the correct robust PCA formulation, because it loses the theoretical connection to the minimization of data reconstruction error, which is one of the most important intuitions and goals of PCA. In this paper, we propose to maximize the L21-norm based robust PCA objective, which is theoretically connected to the minimization of reconstruction error. More importantly, we propose the efficient non-greedy optimization algorithms to solve our objective and the more general L21-norm maximization problem with theoretically guaranteed convergence. Experimental results on real world data sets show the effectiveness of the proposed method for principal component analysis.
منابع مشابه
Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization
Principal Component Analysis (PCA) is one of the most important methods to handle highdimensional data. However, the high computational complexitymakes it hard to apply to the large scale data with high dimensionality, and the used 2-norm makes it sensitive to outliers. A recent work proposed principal component analysis based on 1-normmaximization, which is efficient and robust to outliers. In...
متن کاملAvoiding Optimal Mean Robust PCA/2DPCA with Non-greedy ℓ1-Norm Maximization
Robust principal component analysis (PCA) is one of the most important dimension reduction techniques to handle high-dimensional data with outliers. However, the existing robust PCA presupposes that the mean of the data is zero and incorrectly utilizes the Euclidean distance based optimal mean for robust PCA with `1-norm. Some studies consider this issue and integrate the estimation of the opti...
متن کاملPrincipal Component Analysis by $L_{p}$ -Norm Maximization
This paper proposes several principal component analysis (PCA) methods based on Lp-norm optimization techniques. In doing so, the objective function is defined using the Lp-norm with an arbitrary p value, and the gradient of the objective function is computed on the basis of the fact that the number of training samples is finite. In the first part, an easier problem of extracting only one featu...
متن کاملAvoiding Optimal Mean Robust PCA/2DPCA with Non-Greedy l1-Norm Maximization
1 -Norm Maximization Minnan Luo, Feiping Nie,2⇤ Xiaojun Chang, Yi Yang, Alexander Hauptmann, Qinghua Zheng 1 Shaanxi Province Key Lab of Satellite-Terrestrial Network , Department of Computer Science, Xi’an Jiaotong University, P. R. China. 2 School of Computer Science and Center for Optical Imagery Analysis and Learning, Northwestern Polytechnical University, P. R. China. Centre for Quantum Co...
متن کاملRobust Tensor Clustering with Non-Greedy Maximization
Tensors are increasingly common in several areas such as data mining, computer graphics, and computer vision. Tensor clustering is a fundamental tool for data analysis and pattern discovery. However, there usually exist outlying data points in realworld datasets, which will reduce the performance of clustering. This motivates us to develop a tensor clustering algorithm that is robust to the out...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.08293 شماره
صفحات -
تاریخ انتشار 2016